Examination of Three Empirical Atmospheric Models

A Presentation
Given to
The Department of Physics
Utah State University
In Partial Fulfillment
of the Requirements for the Degree
Doctor of Philosophy

by
David B. Hansen
4 February 2010
Overview

- Motivation for empirical models
- Models to be discussed
 - IRI
 - MSIS
 - HWM
- Items to consider for each model
 - Model input and output parameters
 - Valid domains within the model
 - Model formulation
 - Examples of model output
Why Create an Analytic Empirical Model?

- Provides a model based on observation
- More useful than data tables
- Theoretical models
 - Initialization (background atmosphere)
 - Verification of results
- Satellites
 - Design
 - Instrument data verification
(National Research Council, 1981)
International Reference Ionosphere 2007 (IRI2007)
IRI Description

- Empirical model
 - ISO/TS 16457 (ISO Standard)
- Input
 - Default: year, time of year, time of day, altitude, location
- Output
 - Electron number density
 - Ion number densities
 - H^+, He^+, N^+, O^+, NO^+, O_2^+
 - Electron, ion, and neutral temperatures
Valid IRI Domains

- Year
 - 1958-Present
- Time of year and time of day: no constraints
- Altitude
 - Electron density: 65-1000 km
 - Ion densities: 100-1000 km
 - Temperatures: 120-3000 km
- Coordinates: global
 - Best at mid-latitudes
IRI Data Sources

- Ground:
 - Ionosonde: n_e altitude profile
 - Incoherent scatter radar: T_e, n_e, T_i, n_i, m_i, u_i
- Satellite:
 - Ionosonde: n_e inverse altitude profile
 - In-situ measurements along satellite trajectory
- Rocket:
 - In-situ measurements along rocket trajectory
- Empirical Models:
 - MSIS-86: T_n
 - IGRF: geomagnetic field
Ionosonde Locations

(http://www.ukssdc.ac.uk/wdcc1/ionosondes/world.html)
Incoherent Scatter Radar Locations

(http://www.haystack.mit.edu/atm/mho/iswg/index.html)
IRI Data Fitting

- Altitude profile
 - Epstein transition function
- Day of year
 - Linear interpolation
- Latitude vs. longitude
 - Spherical harmonics
- Time of day
 - Epstein step function
- Magnetic and solar activity
 - Linear interpolation
(Bradley and Dudendy, 1973)
Profile Parameters

- h_{mF2}: height of F2 peak
- f_{oF2}: plasma frequency at F2 peak
- N_{mF2}: plasma density at F2 peak
- y_{mF2}: half thickness
Figure 11.24 Calculated electron density contours $(\log_{10} n_e)$ as a function of altitude and dip latitude at 2000 LT for December solstice conditions.32

(Anderson and Roble, 1981)
(Schunk and Nagy, 2000)
Electron Density (cm\(^{-3}\))
Longitude = 270\(^\circ\) E; 12:00 (LT)

December 21; Solar Minimum

June 21; Solar Minimum
Electron Density (cm^{-3})
Longitude = 270° E; 12:00 (LT)

June 21; Solar Minimum

June 21; Solar Maximum
Electron Density (cm$^{-3}$)
Longitude = 270° E; 12:00 (LT)

December 21; Solar Minimum

June 21; Solar Maximum
Electron Density (cm\(^{-3}\))
Longitude = 270° E; 24:00 (LT)

December 21; Solar Minimum

June 21; Solar Maximum
Electron Density (cm⁻³)
Latitude 45° N; 06:00 (UT)

December 21; Solar Minimum

June 21; Solar Maximum
Electron Density (cm$^{-3}$)
Altitude = 300 km; 06:00 (UT)

December 21; Solar Minimum

June 21; Solar Maximum
March 23-1970; 14:22 (LT)
42.6° N; 288.5° E

(Roble, R. W., 1975)
45° N; 0° E; 12:00 (LT)

21 December; Solar Minimum

21 June; Solar Maximum

[Graphs showing altitude vs. temperature for different components (Electron, Ion, Neutral)]
45° N; 0° E; 12:00 (LT)

21 December; Solar Minimum

21 June; Solar Maximum
Naval Research Laboratory
Mass Spectrometer and
Incoherent Scatter Radar 2000
(NRLMSISE-00)
MSIS Description

- Empirical Model
- Input
 - Day of year, time of day, altitude, location, solar activity, magnetic activity
- Output
 - Number densities of neutral species
 - H, He, N, O, N$_2$, O$_2$, Ar
 - Total mass density
 - Temperature of neutral atmosphere
Valid MSIS Domains

• Day of year and time of day: no constraints
• Altitude
 ◦ He, N₂, O₂, and Ar densities: ground to exosphere
 ◦ O, H, and N densities: 72.5 km to exosphere
 ◦ Temperature: ground to exosphere
• Coordinates: global
• Solar and magnetic activity
 ◦ Above 80 km: user input
 ◦ Below 80 km: f₁₀.₇ = 150.0, Ap = 4.0 (recommended)
MSIS Data Sources

- Incoherent scatter radar: neutral temperature, N_2 density
- Satellite
 - Mass spectrometer: neutral composition
 - UV absorption: O_2 density
 - Accelerometer: total neutral mass density
 - Drag: total neutral mass density
- Rocket
 - Mass spectrometer: neutral composition
 - UV absorption: O_2 density
 - Falling sphere: total neutral mass density
 - Grenade: total neutral mass density
 - Pressure gauge: total neutral mass density
- Handbook for MAP (Middle Atmosphere Program)
 - Neutral temperature
 - Total neutral mass density
MSIS Data Fitting

- Altitude profile
 - Bates profile (low altitude)
 - Inverse polynomial (high altitude)
- Latitude vs. longitude
 - Spherical harmonics
- Solar and magnetic activity
 - Polynomials
- Time variations (day of year, time of day)
 - Fourier series
O Density (cm$^{-3}$)
Longitude = 270° E; 12:00 (LT)

December 21; Solar Minimum

June 21; Solar Maximum
O Density (cm$^{-3}$)
Longitude = 270° E; 24:00 (LT)

December 21; Solar Minimum

June 21; Solar Maximum
O Density (cm$^{-3}$)
Latitude = 45° N; 06:00 (UT)

December 21; Solar Minimum

June 21; Solar Maximum
O Density (cm$^{-3}$)
Altitude = 300 km; 06:00 (UT)

December 21; Solar Minimum

June 21; Solar Maximum
Horizontal Wind Model 2007 (HWM07)
HWM Description

- Empirical model
- Input
 - Day of year, time of day, altitude, geographic location, geomagnetic activity
- Output
 - Northern wind speed
 - Eastern wind speed
Valid HWM Domains

- Day of year and time of day: no constraints
- Altitude: 0-500 km
- Coordinates: global
 - Best at low and mid-latitudes
- Low solar activity
HWM Data Sources

- Ground
 - Fabry-Perot interferometer
 - Incoherent scatter radar
 - Medium-frequency radar
 - LIDAR
- Rocket
 - Falling sphere
 - Rocketsonde
 - Trimethyl aluminum release
- Satellite
 - In-situ measurements along satellite trajectory
 - Fabry-Perot interferometer
- Numerical
 - TIME-GCM
 - NOAA GFS Analysis
 - NASA GEOS4 Analysis
HWM Data Fitting

- Altitude profile
 - Cubic spline (low altitude)
 - Bates-Walker function (high altitude)
- Latitude vs. longitude
 - Vector spherical harmonics
- Time variations
 - Fourier series
- Magnetic activity
 - Polynomial
Neutral Wind
Longitude = 270° E; 12:00 (LT)

December 21; Ap Index = 10

Altitude (km)

500
400
300
200
100

-90 -45 0 45 90

Geographic Latitude

286 m/s

June 21; Ap Index = 150

Altitude (km)

500
400
300
200
100

-90 -45 0 45 90

Geographic Latitude

331 m/s
Neutral Wind

Longitude = 270° E; 24:00 (LT)

December 21; Ap Index = 10

Altitude (km)

Geographic Latitude

247 m/s

June 21; Ap Index = 150

Altitude (km)

Geographic Latitude

531 m/s
Neutral Wind
Latitude = 45° N; 06:00 (UT)

December 21; Ap Index = 10

Altitude (km)

104 m/s

June 21; Ap Index = 150

Altitude (km)

304 m/s
Neutral Wind
Altitude = 300 km; 06:00 (UT)

December 21; Ap Index = 10

June 21; Ap Index = 150
45° N; 0° E; 12:00 (LT)

December 21; Ap Index = 10

June 21, Ap Index = 150
45° N; 0° E; 12:00 (LT)

December 21; Ap Index = 10

June 21, Ap Index = 150
References

References (continued)

